Inhibition by diphosphonate compounds of calcification of porcine bioprosthetic heart valve cusps implanted subcutaneously in rats.
- 1 February 1985
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation
- Vol. 71 (2), 349-356
- https://doi.org/10.1161/01.cir.71.2.349
Abstract
Calcification limits the long-term success of heart valve bioprostheses fabricated from glutaraldehyde cross-linked porcine aortic valves. The pathophysiology of calcification of bioprostheses has been studied experimentally with subcutaneous implants of the valve cusps in rats; in this preparation, the accumulation of calcific deposits is biochemically and morphologically identical to that occurring in clinical specimens. The objective of the present study was to determine whether mineralization of bioprosthetic valve cusps (BC) subcutaneously implanted in 3-week-old male rats could be inhibited through the use of diphosphonate compounds. Ethanehydroxydiphosphonate (EHDP), administered by daily subcutaneous injection (25 mg/kg/24 hr) for 21 days inhibited calcification (BC Ca++ = 154.9 +/- 4.1), but caused somatic growth retardation and disruption of epiphyseal development. However, local administration of EHDP by osmotic pump (5 mg/kg/24 hr) implanted in direct contact with the cuspal tissue for 14 days prevented BC calcification (BC CA++ = 4.3 +/- 0.7) without adverse effects. Furthermore, EHDP given by osmotic pump had a prolonged effect on reducing calcification, as demonstrated by implants harvested 21 days (BC CA++ = 12.2 +/- 6.4) after the drug supply was exhausted. Finally, BC preincubated in aminopropanehydroxydiphosphonate for 24 hr before 21 day implantation underwent less calcification (CA++ = 24.2 +/- 7.4) than control valves (BC CA++ 126.6 +/- 7.5) with no adverse effects. We conclude that diphosphonates inhibit BC calcification, and that adverse effects of systemic therapy can be avoided by local administration.This publication has 36 references indexed in Scilit:
- Modification by the hancock T6 process of calcification of bioprosthetic cardiac valves implanted in sheepThe American Journal of Cardiology, 1984
- Mechanism of calcification of porcine bioprosthetic aortic valve cusps: Role of T-lymphocytesThe American Journal of Cardiology, 1983
- Long-term failure rate and morphologic correlations in porcine bioprosthetic heart valvesThe American Journal of Cardiology, 1983
- Pregnancy in patients with a porcine valve bioprosthesisThe American Journal of Cardiology, 1982
- Five to Eight-Year Follow-up of Patients Undergoing Porcine Heart-Valve ReplacementNew England Journal of Medicine, 1981
- Use of Hancock porcine xenografts in children and adolescentsThe American Journal of Cardiology, 1980
- An important complication of Hancock mitral valve replacement in children.Circulation, 1979
- Structural changes in glutaraldehyde-treated porcine heterografts used as substitute cardiac valves: Transmission and scanning electron microscopic observations in 12 patientsThe American Journal of Cardiology, 1978
- Pathologic findings after cardiac valve replacement with glutaraldehyde-fixed porcine valvesThe American Journal of Cardiology, 1977
- The influence of multidentate organic phosphonates on the crystal growth of hydroxyapatiteCalcified Tissue International, 1973