Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Fatty acid oxidation

Abstract
1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pentanoic acid, pent-2-enoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on the oxidation of saturated fatty acids by rat liver mitochondria were determined. 2. The formation of 14CO2 from [1−14C]palmitate was strongly inhibited by 0·01mm-pent-4-enoic acid. 3. The inhibition of oxygen uptake was less than that of 14CO2 formation, presumably because fumarate was used as a sparker. 4. The oxidation of [1−14C]-butyrate, -octanoate or -laurate was not strongly inhibited by 0·01mm-pent-4-enoic acid. 5. The other four non-hypoglycaemic compounds did not inhibit the oxidation of any saturated fatty acid when tested at 0·01mm concentration, though they all inhibited strongly at 10mm. 6. The oxidation of [1−14C]-myristate and -stearate, but not of [1−14C]decanoate, was strongly inhibited by 0·01mm-pent-4-enoic acid. 7. The oxidation of [1−14C]palmitate was about 50% carnitine-dependent under the experimental conditions used. 8. The percentage inhibition of [1−14C]palmitate oxidation by pent-4-enoic acid was the same whether carnitine was present or not. 9. Acetoacetate formation from saturated fatty acids was inhibited by 0·1mm-cyclopropanecarboxylic acid to a greater extent than their oxidation. 10. The other compounds tested inhibited acetoacetate formation from saturated fatty acids proportionately to the inhibition of oxidation. 11. Possible mechanisms for the inhibition of long-chain fatty acid oxidation by pent-4-enoic acid are discussed. 12. There was a correlation between the ability to inhibit long-chain fatty acid oxidation and hypoglycaemic activity in this series of compounds.