On the dispersion of linear kinematic waves
- 3 June 1958
- journal article
- Published by The Royal Society in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
- Vol. 245 (1241), 268-277
- https://doi.org/10.1098/rspa.1958.0082
Abstract
The theory of kinematic waves, initiated by Lighthill & Whitham, is taken up for the case when the concentration k and flow q are related by a series of linear equations. If the initial disturbance is hump-like it is shown that the resulting kinematic wave can be usefully described by the growth of its mean and variance, the former moving with the kinematic wave velocity and the latter increasing proportionally to the distance travelled. Conditions for these moments to be calculated from the Laplace transform of the solution, without the need of inversion, are obtained and it is shown that for a large class of waves, the ultimate wave form is Gaussian. The power of the method is shown in the analysis of a kinematic temperature wave, where the Laplace transform of the solution cannot be inverted.Keywords
This publication has 5 references indexed in Scilit:
- On shape factors for irregular particles—II.: The transient problem. Heat transfer to a packed bedChemical Engineering Science, 1957
- Holding-time distributions of the Gaussian typeChemical Engineering Science, 1956
- Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatographyChemical Engineering Science, 1956
- Uniform approximations to a class of Bessel functionsProceedings of the American Mathematical Society, 1950
- CHROMATOGRAPHY: A PROBLEM IN KINETICSAnnals of the New York Academy of Sciences, 1948