Role of PGE2 in protease‐activated receptor‐1, −2 and −4 mediated relaxation in the mouse isolated trachea

Abstract
1. The potential mediator role of the prostanoid PGE(2) in airway smooth muscle relaxations induced by peptidic and proteolytic activators of PAR-1, PAR-2, PAR-3 and PAR-4 was investigated in carbachol-precontracted mouse isolated tracheal segments. 2. The tethered ligand domain sequences of murine PAR-1 (SFFLRN-NH(2)), PAR-2 (SLIGRL-NH(2)) and PAR-4 (GYPGKF-NH(2)), but not PAR-3 (SFNGGP-NH(2)), induced smooth muscle relaxation that was abolished by the non-selective cyclo-oxygenase (COX) inhibitor, indomethacin. The relative order for mean peak relaxation was SLIGRL-NH(2)>GYPGKF-NH(2) approximately amp; SFFLRN-NH(2)>SFNGGP-NH(2). 3. SFFLRN-NH(2), SLIGRL-NH(2) and GYPGKF-NH(2), but not SFNGGP-NH(2), induced significant PGE(2) release that was abolished by indomethacin. Like that for relaxation, the relative order for mean PGE(2) release was SLIGRL-NH(2)>GYPGKF-NH(2)>SFFLRN-NH(2)>SFNGGP-NH(2). 4. In dose-response studies, SLIGRL-NH(2) induced concentration-dependent increases in PGE(2) release (EC(50)=20.4 microM) and smooth muscle relaxation (EC(50)=15.8 microM). 5. The selective COX-2 inhibitor, nimesulide, but not the COX-1 inhibitor valeryl salicylate, significantly attenuated SLIGRL-NH(2)-induced smooth muscle relaxation and PGE(2) release. 6. Exogenously applied PGE(2) induced potent smooth muscle relaxation (EC(50)=60.3 nM) that was inhibited by the mixed DP/EP(1)/EP(2) prostanoid receptor antagonist, AH6809. SLIGRL-NH(2)-induced relaxation was also significantly inhibited by AH6809. 7. In summary, the results of this study strongly suggest that PAR-mediated relaxation in murine tracheal smooth muscle is dependent on the generation of the spasmolytic prostanoid, PGE(2). PAR-stimulated PGE(2) release appears to be generated preferentially by COX-2 rather than COX-1, and induces relaxation via activation of the EP(2) receptor.