Abstract
A simple approach to testing the significance of the branching order, estimated from protein or DNA sequence data, of three taxa is proposed. The branching order is inferred by the transformed-distance method, under the assumption that one or two outgroups are available, and the branch lengths are estimated by the least-squares method. The inferred branching order is considered significant if the estimated internodal distance is significantly greater than zero. To test this, a formula for the variance of the internodal distance has been developed. The statistical test proposed has been checked by computer simulation. The same test also applies to the case of four taxa with no outgroup, if one considers an unrooted tree. Formulas for the variances of internodal distances have also been developed for the case of five taxa. Conditions are given under which it is more efficient to add the sequence of a fifth taxon than to do 25% more nucleotide sequencing in each of the original four. A method is presented for combining analyses of disparate data to get a single P value. Finally, the test, applied to the human-chimpanzee-gorilla problem, shows that the issue is not yet resolved.