Evidence for a polarity in the distribution of proteins from the cytoskeleton in Torpedo marmorata electrocytes.

Abstract
The subcellular distribution of the 43,000-D protein (43 kD or v1) and of some major cytoskeletal proteins was investigated in Torpedo marmorata electrocytes by immunocytochemical methods (immunofluorescence and immunogold at the electron microscope level) on frozen-fixed sections and homogenates of electric tissue. A monoclonal antibody directed against the 43-kD protein (Nghiêm, H. O., J. Cartaud, C. Dubreuil, C. Kordeli, G. Buttin, and J. P. Changeux, 1983, Proc. Natl. Acad. Sci. USA, 80:6403-6407), selectively labeled the postsynaptic membrane on its cytoplasmic face. Staining by anti-actin and anti-desmin antibodies appeared evenly distributed within the cytoplasm: anti-desmin antibodies being associated with the network of intermediate-sized filaments that spans the electrocyte, and anti-actin antibodies making scattered clusters throughout the cytoplasm without preferential labeling of the postsynaptic membrane. On the other hand, a dense coating by anti-actin antibodies became apparent on the postsynaptic membrane in homogenates of electric tissue pointing to the possible artifactual redistribution of a soluble cytoplasmic actin pool. Anti-fodrin and anti-ankyrin antibodies selectively labeled the non-innervated membrane of the cell. F actin was also detected in this membrane. Filamin and vinculin, two actin-binding proteins recently localized at the rat neuromuscular junction (Bloch, R. J., and Z. W. Hall, 1983, J. Cell Biol., 97:217-223), were detected in the electrocyte by the immunoblot technique but not by immunocytochemistry. The data are interpreted in terms of the functional polarity of the electrocyte and of the selective interaction of the cytoskeleton with the innervated and non-innervated domains of the plasma membrane.