Hexagons and squares in a passive nonlinear optical system

Abstract
Pattern formation is analyzed and simulated in a nonlinear optical system involving all three space dimensions as well as time in an essential way. This system, counterpropagation in a Kerr medium, is shown to lose stability, for sufficient pump intensity, to a nonuniform spatial pattern. We observe hexagonal patterns in a self-focusing medium, and squares in a self-defocusing one, in good agreement with analysis based on symmetry and asymptotic expansions.