Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron‐sized particles in RAW 264.7 macrophages

Abstract
Photoluminescent silicon nanoparticles have a bright and stable fluorescence and are promising candidates for bio-imaging, cell staining and drug delivery. With increasing development of nanotechnology applications for biomedicine, an understanding of the potential toxicity of nanoparticles is needed to assess safety concerns for clinical applications. The objective of this study was to compare biological responses of silicon nanoparticles (SNs, 3 nm diameter) with silicon microparticles (SMs, approximately 100-3000 nm diameter) in cultured murine macrophages (RAW 264.7) using standard protocols for assessing cytotoxicity/cell viability and inflammatory responses developed for micron-sized particles. SNs and SMs were exposed to macrophages with and without addition of endotoxin lipopolysaccharide (LPS), a positive inducer of tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), and nitric oxide (NO). Cytotoxicity was assayed using the dye exclusion and MTT assays. Cell supernatants were assayed for production TNF-alpha, IL-6 and NO. SNs at concentrations < or = 20 microg ml(-1) exhibited no cytotoxicity or inflammatory responses; however, SNs and SMs >20 and 200 microg ml(-1), respectively, increased cytotoxicity compared with controls. SMs induced concentration-related increases in TNF-alpha and IL-6 production; in contrast, the production of these cytokines was shown to decrease with increasing concentrations of SNs. NO production was not induced by SNs or SMs alone. Fluorescence microscopy demonstrated that SNs were associated with the macrophages, either internalized or attached to cell membranes. In conclusion, evaluating differences in biological responses for nanoparticles compared with microparticles of the same material may help improve tests to assess biological responses of nanoparticles that may be used in biomedical applications.