Fracture of long bones: Rate effects under singular and combined loading states

Abstract
This study was undertaken to determine the effect of loading rate on bone failure under singular and combined loading states. Using the entire loading range of an Instron Materials Testing Machine, 190 pairs of canine radii were tested. One bone of each pair was subjected to either torsional or a combination of axial and torsional loads, and compared with a control specimen. Compressive loads of 4.6 and 11.5 N were utilized. Torque to failure and energy data versus loading rate were plotted. As loading rate increased, the torque and energy values were found to increase, reach a peak, and then decline at higher rates. Fractures produced under the combined state of loading are representative of those clinically found in human trauma situations.