Symmetries and elasticity of nematic gels

Abstract
A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials.
All Related Versions