Control of enzyme activities in cotton cotyledons during maturation and germination

Abstract
Cotton (Gossypium hirsutum L.) embryos excised from bolls 38–43 d after anthesis and cultured in vitro for 4 d on a nutrient agar medium containing 3.8 μM abscisic acid (ABA) developed enzyme activity and accumulated insoluble protein, neutral lipid, and dry weight similar to embryos maturing on the plant. Inclusion of ABA in the medium prevented precosious germination and allowed continued increases in catalase, malate dehydrogenase, citrate synthase, aspartate aminotransferase, and β-oxidation enzyme activities as well as de-novo synthesis of malate synthase. Isocitrate lyase activity was not detectable in ABA-cultured embryos nor normally-developed embryos. Omission of sucrose from the medium resulted in near-doubling of the development of malate synthase activity, with minimal effects on the other enzyme activities. Addition of Actinomycin D, cordycepin, or cycloheximide to ABA-containing cultures did not overcome the observed inhibition of germination, but severely reduced both the appearance of new malate synthase activity and further production of other related enzyme activities. Thus, development of these enzyme activities in the presence of ABA appears dependent on transcription and translation, while inhibition of germination by ABA at this stage of development is not sensitive to the RNA- and protein-synthesis inhibitors. The results indicate that ABA does not prevent vivipary by suppressing translation of m-RNAs coding for isocitrate lyase and its companion enzymes, as previously proposed.