Rational Design of a Reversible pH-Responsive Switch for Peptide Self-Assembly

Abstract
Peptide TZ1H, based on the heptad sequence of a coiled-coil trimer, undergoes fully reversible, pH-dependent self-assembly into long-aspect-ratio helical fibers. Substitution of isoleucine residues with histidine at the core d-positions of alternate heptads introduces a mechanism by which self-assembly is coupled to the protonation state of the imidazole side chain. Circular dichroism spectroscopy, transmission electron microscopy, and microrheology techniques revealed that the self-assembly of TZ1H coincides with a distinct coil-helix conformational transition that occurs within a narrow pH range near the pKa of the imidazole side chains of the core histidine residues.