A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
Open Access
- 8 November 2011
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 6 (11), e27315
- https://doi.org/10.1371/journal.pone.0027315
Abstract
Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e. records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important biological parameters with high reliability and statistical significance. These include the distribution of life/cycle times and cell areas, as well as of the symmetry of cell divisions and motion analyses. The new algorithm thus allows for the quantification and parameterization of cell culture with unprecedented accuracy. To evaluate our validation algorithm, two large reference data sets were manually created. These data sets comprise more than 320,000 unstained adult pancreatic stem cells from rat, including 2592 mitotic events. The reference data sets specify every cell position and shape, and assign each cell to the correct branch of its genealogic tree. We provide these reference data sets for free use by others as a benchmark for the future improvement of automated tracking methods.Keywords
This publication has 31 references indexed in Scilit:
- Epidermal stem cell diversity and quiescenceEMBO Molecular Medicine, 2009
- Glandular tissue from human pancreas and salivary gland yields similar stem cell populationsEuropean Journal of Cell Biology, 2009
- Tracking cells in Life Cell Imaging videos using topological alignmentsAlgorithms for Molecular Biology, 2009
- Cell population tracking and lineage construction with spatiotemporal contextMedical Image Analysis, 2008
- The Large‐Scale Digital Cell Analysis System: an open system for nonperturbing live cell imagingJournal of Microscopy, 2007
- (A)Symmetric Stem Cell Replication and CancerPLoS Computational Biology, 2007
- Stem Cell Fate Analysis Revisited: Interpretation of Individual Clone Dynamics in the Light of a New Paradigm of Stem Cell OrganizationJournal of Biomedicine and Biotechnology, 2007
- Live Cell Quality Control and Utility of Real-Time Cell Electronic Sensing for Assay DevelopmentASSAY and Drug Development Technologies, 2006
- Automated Segmentation, Classification, and Tracking of Cancer Cell Nuclei in Time-Lapse MicroscopyIEEE Transactions on Biomedical Engineering, 2006
- Post-embryonic cell lineages of the nematode, Caenorhabditis elegansDevelopmental Biology, 1977