Tridimensional structure of the Golgi apparatus of nonciliated epithelial cells of the ductuli efferentes in rat: an electron microscope stereoscopic study
- 1 January 1987
- journal article
- research article
- Published by Wiley in Biology of the Cell
- Vol. 60 (2), 103-115
- https://doi.org/10.1111/j.1768-322x.1987.tb00550.x
Abstract
The 3-dimensional structure of the Golgi apparatus has been analyzed in thin and thick sections of nonciliated epithelial cells of ductuli efferentes of rat by use of low- and high-voltage electron microscopes and a stereoscopic approach. In thick sections of tissue impregnated with osmium, the Golgi apparatus appeared at low magnification as a continuous network forming a corona at the apical pole of the nucleus. At higher magnification and in thin sections of tissue postfixed with reduced osmium and stained with lead citrate or treated to demonstrate phosphatase activity, the following structural features were observed. In the longitudinal axis of the Golgi network there were alternating compact and noncompact zones. The compact zones were composed of 6-8 flattened, poorly fenestrated saccules in close apposition to each other and forming stacks. The noncompact zones were composed of a number of highly fenestrated and slightly distended saccule, which were continuous with and bridged the saccules of the compact zones. In the cis-trans axis of the Golgi apparatus the following compartments were observed: (a) On the cis face there was a continuous osmiophilic tubular network referred to as the cis elements; (b) a cis compartment composed of 3 or 4 NADPase-positive saccules perforated with pores in register forming wells that contained small vesicles; (c) a trans compartment composed of 1 or 2 TPPase-positive elements underlying the NADPase ones, followed by 1 or 2 CMPase-positive elements that showed a flattened saccular part continuous with a network of anastomotic tubules. These tubular networks curved away from the overlying elements, giving these elements a ''peeling-off'' configuration. These elements referred to as sacculotubular elements were discontinuous along the Golgi network. This compartment also included shriveled trans-tubular networks detached from the overlying sacculotubular elements and seemingly undergoing fragmentation into vesicles and tubules. The structural features of the elements of the trans compartment were indicative of continuous renewal.This publication has 1 reference indexed in Scilit:
- Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells.The Journal of cell biology, 1986