Receptor Autoradiography as a Tool for the Study of the Phylogeny of the Basal Ganglia

Abstract
Recent studies on the neurotransmitter organization of the basal ganglia and forebrain in lower vertebrates suggest that, in contrast to the old concepts of the phylogeny of the brain, there are many similarities between the chemical organization of the brain throughout evolution. By examining neurotransmitter receptors using in vitro autoradiography we have attempted to further our understanding of the evolution of the brain. Receptors enriched in different parts of the basal ganglia in mammals appear to be also enriched in the homologous areas in lower vertebrates. Thus, for example, dopamine and muscarinic receptors, but not serotonin-1A, are enriched in the paleostriatum augmentatum while GABA/benzo-diazepine receptors are enriched in the paleostriatum primitivum corresponding with their localization to the caudate-putamen and globus pallidus respectively. Our results support the concept of a more conservative evolution of the vertebrate brain and demonstrate the usefulness of receptor autoradiography in the understanding of brain evolution.