Abstract
Predictions may be made for the influence of solvent choice on the equilibrium position of biocatalyzed reactions, based on data for the liquid–liquid distribution of the reactants. The most reliable predictions are probably for dilute systems, based on partition coefficients or correlations derived from them. The effective equilibrium constant for esterification reactions is predicted to alter by more than four orders of magnitude on changing between different water-immiscible solvents. The equilibrium constant correlates well with the solubility of water in the solvent, and is most favorable for synthesis in the least polar solvents (aliphatic hydrocarbons). Similar effects seem to apply for other reactions, including oxidation of alcohols and hydrolysis of chlorides. Predictions can be made for nondilute systems using the UNIFAC system of group contributions, but the reliability of these is more questionable.