DNA Analysis Using an Electrospray Scanning Mobility Particle Sizer

Abstract
A scanning mobility particle sizer (SMPS) allows size separation of gas phase particles according to their electrophoretic mobilities. The addition of an electrospray source (ES) recently allowed extension of SMPS analysis to the macromolecular range. We demonstrate here the application of ES-SMPS to nucleic acids analysis. Single- and double-stranded DNA molecules ranging from 6.1 kDa (single-stranded DNA 20 nucleotides in length) to 300 kDa (500 base-pair double-stranded DNA) were separated and detected by ES-SMPS at the picomole to femtomole levels. The measured electrophoretic mobility diameters were found to correlate with the analytes' molecular weights, while the peak areas could yield quantitative information. No fragmentation of DNA was observed under the conditions employed. Different apparent densities were observed for single-stranded and double-stranded DNAs, showing a different behavior for each type of biomolecule. The total analysis time was about 3 min/spectrum. Further optimization of ES-SMPS is expected to make it a fast and sensitive technique for biopolymer characterization.