Inhibition of cutaneous ultraviolet light B–mediated inflammation and tumor formation with topical celecoxib treatment

Abstract
Inflammation, which includes the release of growth factors, proinflammatory cytokines and prostaglandins, the infiltration and activation of inflammatory cells, and the induction of oxidative DNA damage, is known to play a role in cancer development. The combination of damage to the skin resulting from chronic ultraviolet light B (UVB) exposure itself and the inflammatory response it induces is a major source of skin cancer development. Cyclooxygenase-2 (COX-2), an inflammatory enzyme responsible for the production of prostaglandins, is now implicated in the development of epithelial cancers, including squamous cell carcinoma in the skin. Previous work conducted in our laboratory has shown that topical treatment with celecoxib following UVB irradiation inhibits several parameters of acute inflammation, including vascular permeability, the infiltration and activation of neutrophils, and the production of prostaglandin E2 (PGE2). The present studies expanded these observations, demonstrating the ability of topical celecoxib to inhibit acute oxidative damage. In addition, long-term studies illustrate the effectiveness of topical treatment with this drug in reducing chronic inflammation and UVB-induced papilloma/carcinoma formation. This data provides compelling evidence to explore the clinical efficacy of topically applied COX-2 inhibitors for the prevention of human skin cancers.