Range-Doppler Imaging with Motion through Resolution Cells

Abstract
Doppler processing in pulsed radar is analyzed for time intervals which involve motion through range resolution cells, the emphasis being on the range-Doppler imaging of a rigid rotating body. The objective of the theory is to derive a method for compensating for motion through range and cross-range resolution cells. The compensation ion procedure described is compatible with optical data processing. With such a two-dimensional processor, the method permits simultaneous eous compensation for all points in the target field. The s consists of taking the Fourier transform in the range dimension, followed by a gentle distortion of this range-transform plane, and that followed by a two-dimensional Fourier transform. Two implementations with experimental results are briefly mentioned. One implementation is all optical and utilizes a holographic hyperbolic lens and/or holographic conical lens. The other implementation, involves applying the appropriate te distortion electronically as th " range sweeps" from the pulse train are received and put on film.

This publication has 1 reference indexed in Scilit: