A new method for estimating the angular power spectrum C_l from cosmic microwave background (CMB) maps is presented, which has the following desirable properties: (1) It is unbeatable in the sense that no other method can measure C_\l with smaller error bars. (2) It is quadratic, which makes the statistical properties of the measurements easy to compute and use for estimation of cosmological parameters. (3) It is computationally faster than rival high-precision methods such as the nonlinear maximum-likelihood technique, with the crucial steps scaling as n^2 rather than n^3, where n is the number of map pixels. (4) It is applicable to any survey geometry whatsoever, with arbitraty regions masked out and arbitrary noise behaviour. (5) It is not a "black-box" method, but quite simple to understand intuitively: it corresponds to a high-pass filtering and edge softening of the original map followed by a straight expansion in truncated spherical-harmonics. It is argued that this method is computationally feasible even for futute high-resolution CMB experiments with n=10^6-10^7. It is also shown that C_l computed with this method is useful not merely for graphical presentation purposes, but also as an intermediate (and arguably necessary) step in the data analysis pipeline, reducing the data set to a more manageable size before the final step of constraining Gaussian cosmological models and parameters - while retaining all the cosmological information that was present in the original map.