Vapor−Solid Growth and Characterization of Aluminum Nitride Nanocones

Abstract
Aluminum nitride nanostructures are attractive for many promising applications in semiconductor nanotechnology. Herein we report on vapor−solid growth of quasi-aligned aluminum nitride nanocones on catalyst-coated wafers via the reactions between AlCl3 vapor and NH3 gas under moderate temperatures around 700 °C, and the growth mechanism is briefly discussed. The as-prepared wurtzite aluminum nitride nanocones grow preferentially along the c-axis with adjustable dimensions of the sharp tips in the range of 20−60 nm. The photoluminescence spectrum reveals a broad blue emission band with a fine photon structure while the field emission study shows a notable emission current with a moderate turn-on field as expected, suggesting their potential applications in light and electron emission nanodevices.