Circularly Permuted tRNAs as Specific Photoaffinity Probes of Ribonuclease P RNA Structure

Abstract
Regions of Escherichia coli ribonuclease P (RNase P) RNA in proximity to a bound transfer RNA (tRNA) substrate were mapped by photoaffinity. A photoaffinity cross-linking reagent was introduced at specific sites in the interior of the native tRNA structure by modification of the 5' ends of circularly permuted tRNAs (cptRNAs). The polymerase chain reaction was used for the production of cptRNA templates. After the amplification of a segment of a tandemly duplicated tRNA gene, the cptRNA gene was transcribed in vitro to produce cptRNA. Modified cptRNAs were cross-linked to RNase P RNA, and the conjugation sites in RNase P RNA were determined by primer extension. These sites occur in phylogenetically conserved structures and sequences and identify regions of the ribozyme that form part of the tRNA binding site. The use of circularly permuted molecules to position specific modifications is applicable to the study of many inter- and intramolecular interactions.