Vibration of Stress-Free Hollow Cylinders of Arbitrary Cross Section

Abstract
A three-dimensional elasticity solution to the vibrations of stress-free hollow cylinders of arbitrary cross section is presented. The natural frequencies and deformed mode shapes of these cylinders are obtained via a three-dimensional displacement-based energy formulation. The technique is applied specifically to the parametric investigation of hollow cylinders of different cross sections and sizes. It is found that the cross-sectional property of the cylinder has significant effects on the normal mode responses, particularly, on the transverse bending modes. By varying the length-to-width ratio of these elastic cylinders, interesting results demonstrating the dependence of frequencies on the length of the cylinder have been concluded.

This publication has 8 references indexed in Scilit: