Quantitative phase-flow MR imaging in dogs by using standard sequences: comparison with in vivo flow-meter measurements

Abstract
For evaluation of the feasibility and clinical potential of using the phase data from standard MR imaging sequences to measure blood flow, 11 vessels with diameters of 4 to 7 mm were imaged in seven dogs. The flow in either the superior mesenteric vein or the inferior vena cava was measured first at laparotomy (in ml/min) with electromagnetic flow meters. Immediately thereafter, these vessels were imaged by MR in 25-mm thick sections by using a standard spin echo (SE) 750/30 sequence with a Philips 0.5-T imager. Previous phase-flow calibration of the imager and sequence allowed calculation of the blood flow rates from the phase images that were used to measure the vessels' cross-sectional areas and blood phase values. Comparison of the measurements obtained with each technique showed a significant correlation (r = .977, p less than .05) between MR-imaging values and flow-meter measurements when the blood velocity was less than approximately 40 cm/sec, the known upper limit of the flow dynamic range for the MR hardware and sequence used. There was no correlation for blood velocities greater than 40 cm/sec. However, the range of blood flow velocities in dogs and man extends to more than 100 cm/sec. Thus, these results suggest that this technique might yield valuable adjunctive flow data in routine clinical imaging provided that improvements in hardware and software permit a larger dynamic range.