Linear Artificial Molecular Muscles
Top Cited Papers
- 15 June 2005
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 127 (27), 9745-9759
- https://doi.org/10.1021/ja051088p
Abstract
Two switchable, palindromically constituted bistable [3]rotaxanes have been designed and synthesized with a pair of mechanically mobile rings encircling a single dumbbell. These designs are reminiscent of a “molecular muscle” for the purposes of amplifying and harnessing molecular mechanical motions. The location of the two cyclobis(paraquat-p-phenylene) (CBPQT4+) rings can be controlled to be on either tetrathiafulvalene (TTF) or naphthalene (NP) stations, either chemically (1H NMR spectroscopy) or electrochemically (cyclic voltammetry), such that switching of inter-ring distances from 4.2 to 1.4 nm mimics the contraction and extension of skeletal muscle, albeit on a shorter length scale. Fast scan-rate cyclic voltammetry at low temperatures reveals stepwise oxidations and movements of one-half of the [3]rotaxane and then of the other, a process that appears to be concerted at room temperature. The active form of the bistable [3]rotaxane bears disulfide tethers attached covalently to both of the CBPQT4+ ring components for the purpose of its self-assembly onto a gold surface. An array of flexible microcantilever beams, each coated on one side with a monolayer of 6 billion of the active bistable [3]rotaxane molecules, undergoes controllable and reversible bending up and down when it is exposed to the synchronous addition of aqueous chemical oxidants and reductants. The beam bending is correlated with flexing of the surface-bound molecular muscles, whereas a monolayer of the dumbbell alone is inactive under the same conditions. This observation supports the hypothesis that the cumulative nanoscale movements within surface-bound “molecular muscles” can be harnessed to perform larger-scale mechanical work.Keywords
This publication has 94 references indexed in Scilit:
- The Role of Physical Environment on Molecular Electromechanical SwitchingChemistry – A European Journal, 2004
- Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid SubstratesNano Letters, 2004
- Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest MachinesAustralian Journal of Chemistry, 2004
- Redox‐Controllable Amphiphilic [2]RotaxanesChemistry – A European Journal, 2003
- Molecular Recognition in a Supramolecular Polymer System Translated into Mechanical MotionAngewandte Chemie International Edition, 2003
- Toward Chemically Controlled Nanoscale Molecular MachineryAngewandte Chemie International Edition, 2003
- Nanoscale molecular-switch crossbar circuitsNanotechnology, 2003
- Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) DethreadingChemistry – A European Journal, 1997
- Dynamic Control and Amplification of Molecular Chirality by Circular Polarized LightScience, 1996
- A chemically and electrochemically switchable molecular shuttleNature, 1994