The histidine residue of codon 715 is essential for function of elongation factor 2

Abstract
Several mutant cDNAs of elongation factor 2 (EF-2) were constructed by site-directed mutagenesis and their products expressed in mouse cells were investigated. Amino acid substitution for the histidine residue of codon 715, which is modified post-translationally to diphthamide, resulted in non-functional EF-2 and this substitution did not render EF-2 resistant to Pseudomonas aeruginosa exotoxin A, which inactivates EF-2 transferring ADP-ribose to the diphthamide residue. These non-functional EF-2s with replacements of the histidine-715 residue showed various extents of inhibition of protein synthesis by competing with functional EF-2 in vivo. These results suggest that histidine-715 is essential for the translocase activity of EF-2 and that the region around diphthamide functions in recognition of, and/or binding to ribosomes. Substitution of proline for the alanine-713 residue and substitution of glutamine for the glycine-717 residue converted EF-2 to partially toxin-resistant forms. Two-dimensional gel analysis with fragment A of diphtheria toxin of these toxin-resistant EF-2s revealed that their ADP-ribosylations by toxin were much less than that of wild-type EF-2.