Abstract
A variation and extension of Goland and Reissner’s (1) method of approach is presented for determining the stresses in cemented lap joints by assuming that the two lap-joint plates act like simple beams and the more elastic cement layer is an infinite number of shear and tension springs. Differential equations are set up which describe the transfer of the load in one beam through the springs to the other beam. From the solution of these differential equations a fairly complete analysis of the stresses in the lap joint is obtained. The spring-beam analogy method is applied to a particular type of lap joint, and an analysis of the stresses at the discontinuity, stress distributions, and the effects of variables on these stresses are presented. In order to check the analytical results, they are compared to photoelastic and brittle lacquer experimental results. The spring-beam analogy solution was found to give a fairly accurate presentation of the stresses in the lap joint investigated and should be useful in analyzing other cemented lap-joint structures.