The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp.

Abstract
Ligand-stimulated autophosphorylation of the platelet-derived growth factor receptor (PDGFR) beta subunit creates a number of binding sites for SH2-containing proteins. One of the PDGFR-associated proteins is a 64-kDa protein of unknown identity and function. We present data indicating that the 64-kDa protein that associates with the activated PDGFR is Syp (also called SH-PTP2, PTP-1D, or SH-PTP3), the ubiquitously expressed 64-kDa SH2-containing protein-tyrosine phosphatase. Phosphorylation of Tyr-1009 in the C terminus of the PDGFR is required for the stable association of Syp, suggesting that phosphorylation of this residue creates a binding site for the Syp SH2 domains. Although Syp stably associates with the PDGFR, this event is not required for PDGF-stimulated tyrosine phosphorylation of Syp. These data raise the interesting possibility that protein-tyrosine phosphatases contribute to the intracellular relay of biological signals originating from receptor tyrosine kinases such as the PDGFR.