Regulation of mitochondrial pyruvate carboxylation in isolated hepatocytes by acute insulin treatment

Abstract
The effect of acute insulin treatment of hepatocytes on pyruvate carboxylation in both isolated mitochondria and cells rendered permeable by filipin was examined. Challenging the cells with insulin alone had no effect on either the basal rate of pyruvate carboxylation or gluconeogenesis, although it did suppress the responses to both glucagon and catecholamines. Insulin treatment was unable to antagonize the enhanced rate of pyruvate carboxylation caused by stimulation of the cells with either angiotensin or vasopressin. Neither insulin nor the gluconeogenic hormones altered the total extractable pyruvate carboxylase activity in the isolated mitochondria, suggesting that the effect of hormones at the level of the isolated intact organelle was mediated via alterations in the intramitochondrial concentrations of effector molecules, notably ATP and the [ATP]/[ADP] ratio and substrate availability. The alterations in pyruvate carboxylation correlate well with glucose synthesis in terms of sensitivity to effector molecules, putative second messengers and time of onset of the response, indicating that alterations in the flux through this enzyme are compatible with it being an important site in the control of gluconeogenesis from C3 precursors.

This publication has 45 references indexed in Scilit: