Imaging Neuronal Activity During Zebrafish Behavior With a Genetically Encoded Calcium Indicator
Open Access
- 1 December 2003
- journal article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 90 (6), 3986-3997
- https://doi.org/10.1152/jn.00576.2003
Abstract
Genetically encoded calcium indicators, such as cameleon, have offered the promise of noninvasively monitoring activity of neurons, but no one has demonstrated whether these indicators can report calcium transients in neurons of behaving vertebrates. We show that cameleon can be expressed at high levels in sensory and spinal cord neurons in zebrafish by using neural-specific promoters in both transient expression experiments and in a stable transgenic line. Using standard confocal microscopy, calcium transients in identified motoneurons and spinal interneurons could be detected during escape behaviors produced by a touch on the head of the fish. Small movements of the restrained fish during the behavior did not represent a major problem for analyzing the calcium responses because of the ratiometric nature of cameleon. We conclude that cameleon can be used to noninvasively study the activity of neurons in an intact, behaving vertebrate. The ability to introduce an indicator genetically allows for studies of the functional roles of local interneurons that cannot easily be monitored with other approaches. Transgenic lines such as the one we generated can also be crossed into mutant lines of fish to study both structural and functional consequences of the mutations.Keywords
This publication has 32 references indexed in Scilit:
- Identification and function of thermosensory neurons in Drosophila larvaeNature Neuroscience, 2003
- Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly BrainCell, 2003
- Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection NeuronsCurrent Biology, 2002
- Circularly permuted green fluorescent proteins engineered to sense Ca 2+Proceedings of the National Academy of Sciences, 2001
- Polymodal Motion Processing in Posterior Parietal and Premotor CortexNeuron, 2001
- Analysis of Upstream Elements in the HuC Promoter Leads to the Establishment of Transgenic Zebrafish with Fluorescent NeuronsDevelopmental Biology, 2000
- Induction of ?1-tubulin gene expression during development and regeneration of the fish central nervous systemJournal of Neurobiology, 1998
- Imaging the Functional Organization of Zebrafish Hindbrain Segments during Escape BehaviorsNeuron, 1996
- Zebrafish elav/HuC homologue as a very early neuronal markerNeuroscience Letters, 1996
- Glycinergic Inhibitory Synaptic Currents and Related Receptor Channels in the Zebrafish BrainEuropean Journal of Neuroscience, 1994