Alternative Splicing of the DrosophilaDscamPre-mRNA Is Both Temporally and Spatially Regulated

Abstract
The Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam) gene encodes an axon guidance receptor that can express 38,016 different mRNAs by virtue of alternative splicing. The Dscam gene contains 95 alternative exons that are organized into four clusters of 12, 48, 33, and 2 exons each. Although numerous Dscam mRNA isoforms can be synthesized, it remains to be determined whether different Dscam isoforms are synthesized at different times in development or in different tissues. We have investigated the alternative splicing of the Dscam exon 4 cluster, which contains 12 mutually exclusive alternative exons, and found that Dscam exon 4 alternative splicing is developmentally regulated. The most highly regulated exon, 4.2, is infrequently used in early embryos but is the predominant exon 4 variant used in adults. Moreover, the developmental regulation of exon 4.2 alternative splicing is conserved in D. yakuba. In addition, different adult tissues express distinct collections of Dscam mRNA isoforms. Given the role of Dscam in neural development, these results suggest that the regulation of alternative splicing plays an important role in determining the specificity of neuronal wiring. In addition, this work provides a framework to determine the mechanisms by which complex alternative splicing events are regulated.