Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway

Abstract
Changes in O2 concentration were measured during in situ incubation of whole, young Laminaria hyperborea and used to evaluate primary production and respiration over a 3-y period (1995–1998). The exudation of dissolved organic carbon (DOC) during incubation was also measured. Total carbohydrates and polyphenols in the exudates and the regional seawater were determined and fractionated into low molecular weight (LMW) and high molecular weight (HMW) species. Net production rates varied significantly, being highest during the growth phase (March), while respiration rates did not vary significantly. The exudation rates correlated with the plant strategy of growth and production in which high requirements for growth led to a lower proportion of fixed carbon being exuded. More fixed carbon was exuded during the non-growth phase. The annual exudation of DOC is estimated to be ∼26% of fixed carbon and amounts to ∼1·29 kgC m−2 y−1. The annual amount of carbon retained by the kelp (the difference between fixed and exuded carbon), assumed to contribute to growth, corresponds to a biomass increase of 3·0 kgC m−2 y−1, a value similar to those reported using direct measurements of biomass increase in the region. Carbohydrate concentrations in the exudates were lower during March than in other months, in accordance with the plant growth strategy. Phenols, on the other hand, which are assumed to function as predator deterrent, showed no significant variations in the exudate. The fraction is dominated by carbohydrates while phenols occurred mainly in the LMW fractions.