Experimental determination of the three-dimensional vorticity field in the boundary-layer transition process

Abstract
The vortex loop observed in flow-visualization studies of boundary-layer transition has been investigated by mapping the instantaneous velocity and vorticity fields. All three velocity components have been measured with hot-film anemometers at numerous grid points in a measuring volume centred on the location where the vortex loop appears in flow-visualizaton studies. The instantaneous vorticity field has been computed from the velocity field, and the vortex loop is revealed in the longitudinal component of vorticity. The loop propagates downstream at approximately the primary disturbance wavespeed. The fluid in the outer part of the boundary layer travels faster, and flows over the loop. This forms the inflexional high-shear layer, which breaks down into the hairpin vortices. The magnitude of the vorticity in the high-shear layer is actually about three times larger than that in the loop. These two regions of vorticity are distinguished by the direction of the instantaneous vorticity vectors, i.e. the vectors in the high-shear layer run in the spanwise direction, while the vectors in the vortex loop run primarily in the downstream direction. This also explains why the loop cannot be detected with simple ∂u/∂y measurements.

This publication has 9 references indexed in Scilit: