The strength of metals

Abstract
1. When crystals of a metal are highly perfect, their elastic limit is low, plastic flow taking place when the applied shear stress is very small. The elastic limit reaches higher values as the perfect structure is progressively broken up by cold-work. A steady state is finally reached where further distortion of the metal does not increase the elastic limit. The stress at which a metal passes beyond the elastic limit and begins to yield is ill-defined, as in general the crystal begins to ‘creep’ appreciably near this point and the time element enters into the definition of the stress-strain curve. Nevertheless, there is a fairly well-defined stress beyond which a metal, which has been brought into a steady state by being saturated with cold-work, ceases to behave elastically and undergoes permanent deformation. An attempt is made in this paper to derive an expression for the ultimate elastic limit or yield stress of a cold-worked metal, in terms of its structure and elastic constants.

This publication has 7 references indexed in Scilit: