Insulin transport across capillaries is rate limiting for insulin action in dogs.
Open Access
- 1 November 1989
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 84 (5), 1620-1628
- https://doi.org/10.1172/jci114339
Abstract
This study examined the relationship between transcapillary insulin transport and insulin action in vivo. During euglycemic clamps (n = 7) in normal conscious dogs we simultaneously measured plasma and thoracic duct lymph insulin and glucose utilization (Rd). Clamps consisted of an activation phase with constant insulin infusion (0.6 mU/kg per min) and a deactivation phase. [14C]Inulin was infused as a passively transported control substance. While [14C]inulin reached an equilibrium between plasma and lymph, steady-state (ss) plasma insulin was higher than lymph (P less than 0.05) and the ratio of 3:2 was maintained during basal, activation, and deactivation phases: 18 +/- 2 vs. 12 +/- 1, 51 +/- 2 vs. 32 +/- 1, and 18 +/- 3 vs. 13 +/- 1 microU/ml. In addition, it took longer for lymph insulin to reach ss than plasma insulin during activation and deactivation: 11 +/- 2 vs. 31 +/- 5 and 8 +/- 2 vs. 32 +/- 6 min (P less than 0.02). Rd increased from 2.6 +/- 0.1 to a ss of 6.6 +/- 0.4 mg/kg per min within 50 +/- 8 min. There was a remarkable similarity in the dynamics of insulin in lymph and Rd: the time to reach ss for Rd was not different from lymph insulin (P greater than 0.1), and the relative increases of the two measurements were similar, 164 +/- 45% and 189 +/- 29% (P greater than 0.05). While there was only a modest correlation (r = 0.78, P less than 0.01) between Rd and plasma insulin, the dynamic changes of lymph insulin and Rd showed a strong correlation (r = 0.95, P less than 0.01). The intimate relationship between lymph insulin and Rd suggests that the transcapillary insulin transport is primarily responsible for the delay in Rd. Thus, transcapillary transport may be rate limiting for insulin action, and if altered, it could be an important component of insulin resistance in obesity and diabetes mellitus.This publication has 51 references indexed in Scilit:
- In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects.Journal of Clinical Investigation, 1986
- Thoracic duct lymph flow in pregnant sheep and response to blood volume expansionAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1986
- Degradative processing of internalized insulin in isolated adipocytes.Journal of Biological Chemistry, 1985
- Processing and transport of insulin by vascular endothelial cellsAmerican Journal Of Medicine, 1985
- Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in ratsAmerican Journal of Physiology-Endocrinology and Metabolism, 1985
- Receptor-Mediated Transport of Insulin Across Endothelial CellsScience, 1985
- Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta.Journal of Clinical Investigation, 1985
- Processing of Insulin by Bovine Endothelial Cells in Culture: Internalization Without DegradationDiabetes, 1984
- RAPID TRANSPORT OF BIOLOGICALLY INTACT INSULIN THROUGH CULTURED ENDOTHELIAL CELLSJournal of Clinical Endocrinology & Metabolism, 1984
- Phosphorylation of exogenous substrates by the insulin receptor-associated protein kinase.Journal of Biological Chemistry, 1983