The structure of suspended graphene sheets

Abstract
Graphene — a recently isolated one-atom-thick layered form of graphite — is a hot topic in the materials science and condensed matter physics communities, where it is proving to be a popular model system for investigation. An experiment involving individual graphene sheets suspended over a microscale scaffold has allowed structure determination using transmission electron microscopy and diffraction, perhaps paving the way towards an answer to the question of why graphene can exist at all. The 'two-dimensional' sheets, it seems, are not flat, but wavy. The undulations are less pronounced in a two-layer system, and disappear in multilayer samples. Learning more about this 'waviness' may reveal what makes these extremely thin carbon membranes so stable. Investigations of individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or in air reveal that the membranes are not perfectly flat, but exhibit an intrinsic waviness, such that the surface normal varies by several degrees, and out-of-plane deformations reach 1 nm. The recent discovery of graphene has sparked much interest, thus far focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particles1,2,3. However, the physical structure of graphene—a single layer of carbon atoms densely packed in a honeycomb crystal lattice—is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional material, exhibiting such a high crystal quality that electrons can travel submicrometre distances without scattering. On the other hand, perfect two-dimensional crystals cannot exist in the free state, according to both theory and experiment4,5,6,7,8,9. This incompatibility can be avoided by arguing that all the graphene structures studied so far were an integral part of larger three-dimensional structures, either supported by a bulk substrate or embedded in a three-dimensional matrix1,2,3,9,10,11,12. Here we report on individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick, yet they still display long-range crystalline order. However, our studies by transmission electron microscopy also reveal that these suspended graphene sheets are not perfectly flat: they exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically thin single-crystal membranes offer ample scope for fundamental research and new technologies, whereas the observed corrugations in the third dimension may provide subtle reasons for the stability of two-dimensional crystals13,14,15.
All Related Versions