Highly Selective Fluorometric Determination of Polyamines Based on Intramolecular Excimer-Forming Derivatization with a Pyrene-Labeling Reagent

Abstract
We introduce a novel approach in highly selective and sensitive fluorescence derivatization of polyamines. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), followed by reversed-phase high-performance liquid chromatography (HPLC). Polyamines, having two to four amino moieties in a molecule, were converted to the corresponding dipyrene- to tetrapyrene-labeled derivatives by reaction (100 °C, 20 min) with PSE. The derivatives afforded intramolecular excimer fluorescence (450−520 nm), which can clearly be discriminated from the monomer (normal) fluorescence (360−420 nm) emitted from PSE, its hydrolysate and monopyrene-labeled derivatives of monoamines. The structures of the derivatives were confirmed by HPLC with mass spectrometry, and the emission of excimer fluorescence could be proved by spectrofluorometry and time-resolved fluorometry. The PSE derivatives of four polyamines [putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)] could be separated by reversed-phase HPLC on a C8 column with linear gradient elution. The detection limits (signal-to-noise ratio of 3) for the polyamines were 1 (Put), 1 (Cad), 5 (Spd), and 8 (Spm) fmol on the column. Furthermore, the present method was so selective that biogenic monoamines gave no peak in the chromatogram.

This publication has 15 references indexed in Scilit: