Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice #
Open Access
- 27 April 2009
- journal article
- research article
- Published by Wolters Kluwer Health in Hepatology
- Vol. 49 (5), 1545-1553
- https://doi.org/10.1002/hep.22847
Abstract
The early stages of alcohol-induced liver injury involve chronic inflammation. Whereas mechanisms by which this effect is mediated are not completely understood, it is hypothesized that enhanced sensitivity to circulating lipopolysaccharide (LPS) contributes to this process. It has recently been shown that ethanol induces activation of plasminogen activator inhibitor-1 (PAI-1). PAI-1 causes fibrin accumulation in liver by inhibiting degradation of fibrin (fibrinolysis). LPS also enhances fibrin accumulation by activating the coagulation cascade. It was therefore hypothesized that ethanol will synergistically increase fibrin accumulation caused by LPS, enhancing liver damage. Accordingly, the effect of ethanol pretreatment on LPS-induced liver injury and fibrin deposition was determined in mice. Ethanol enhanced liver damage caused by LPS, as determined by plasma parameters and histological indices of inflammation and damage. This effect was concomitant with a significant increase in PAI-1 expression. Extracellular fibrin accumulation caused by LPS was also robustly increased by ethanol preexposure. Coadministration of the thrombin inhibitor hirudin or the MEK (mitogen-activated protein kinase) inhibitor U0126 significantly attenuated the enhanced liver damage caused by ethanol preexposure; this protection correlated with a significant blunting of the induction of PAI-1 caused by ethanol/LPS. Furthermore, thrombin/MEK inhibition prevented the synergistic effect of ethanol on the extracellular accumulation of fibrin caused by LPS. Similar protective effects on fibrin accumulation were observed in tumor necrosis factor receptor 1 (TNFR-1)−/− mice or in wild-type injected with PAI-1-inactivating antibody. Conclusion: These results suggest that enhanced LPS-induced liver injury caused by ethanol is mediated, at least in part, by fibrin accumulation in livers, mediated by an inhibition of fibrinolysis by PAI-1. These results also support the hypothesis that fibrin accumulation may play a critical role in the development of early alcohol-induced liver injury. (Hepatology 2009.)Keywords
This publication has 31 references indexed in Scilit:
- Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in miceAmerican Journal of Physiology-Gastrointestinal and Liver Physiology, 2008
- Metformin Prevents Alcohol-Induced Liver Injury in the Mouse: Critical Role of Plasminogen Activator Inhibitor-1Gastroenterology, 2006
- Metformin Prevents Endotoxin-Induced Liver Injury after Partial HepatectomyJournal of Pharmacology and Experimental Therapeutics, 2005
- Coagulation-Mediated Hypoxia and Neutrophil-Dependent Hepatic Injury in Rats Given Lipopolysaccharide and RanitidineJournal of Pharmacology and Experimental Therapeutics, 2005
- Role of Hepatic Fibrin in Idiosyncrasy–Like Liver Injury From Lipopolysaccharide–Ranitidine Coexposure in RatsHepatology, 2004
- Adverse hepatic drug reactions: inflammatory episodes as consequence and contributorChemico-Biological Interactions, 2004
- Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1International Journal of Obesity, 2004
- Chronic Ethanol Exposure Potentiates Lipopolysaccharide Liver Injury Despite Inhibiting Jun N-terminal Kinase and Caspase 3 ActivationJournal of Biological Chemistry, 2002
- Inhibition of cytokine production by cyclosporin A and transforming growth factor beta.The Journal of Experimental Medicine, 1987
- Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excessJournal of Hepatology, 1987