Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes

Abstract
Fluorescently labeled proteins were electrophoretically concentrated on microfabricated devices prior to separation and laser-induced fluorescence detection on the same device. The proteins were concentrated using a porous silica membrane between adjacent microchannels that allowed the passage of buffer ions but excluded larger migrating molecules. Concentrated analytes were then injected into the separation column for analysis. Two basic microchip designs were tested that allowed sample concentration either directly in the sample injector loop or within the microchannel leading from the sample reservoir to the injector. Signal enhancements of ∼600-fold were achieved by on-chip preconcentration followed by SDS−CGE separation. Preconcentration for CE analysis in both coated and uncoated open channels was also demonstrated. Fluorescently labeled ovalbumin could be detected at initial concentrations as low as 100 fM by using a combination of field-amplified injection and preconcentration at a membrane prior to CE in coated channels.