A genetic analysis of DNA sequence requirements for Dissociation state I activity in tobacco.
- 1 May 1993
- journal article
- Published by Oxford University Press (OUP) in Plant Cell
- Vol. 5 (5), 501-514
- https://doi.org/10.1105/tpc.5.5.501
Abstract
Our objective was to test whether the double Ds structure correlated with Dissociation state I activity (i.e., high frequency of chromosome breakage and low frequency of reversion) in maize exhibited similar properties in tobacco. A genetic assay was established to test double Ds and related structures for their ability to cause loss of the linked marker genes streptomycin phosphotransferase and beta-glucuronidase in transgenic tobacco. An engineered double Ds element and a simple Ds element showed behavior consistent with that of state I and state II Ds elements, respectively, as described for maize. DNA structural rearrangements accompanied marker gene loss. Dissection of the double Ds structure showed that a left end and a right end of Ds in direct orientation were sufficient for the instability observed. This result suggested that left and right ends of Ds in direct orientation can participate in aberrant transposition events, consistent with two different models for double Ds-induced chromosome breakage proposed previously. Both models predict that the inversion of a half Ds element accompanies the aberrant transposition event. Such an inversion was detected by polymerase chain reaction experiments in tobacco and maize only when Activator activity was present in the genome.Keywords
This publication has 13 references indexed in Scilit:
- Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition.Plant Cell, 1993
- The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformantsPlant Molecular Biology, 1990
- Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco.Plant Cell, 1990
- Chromosome-breaking structure in maize involving a fractured Ac element.Proceedings of the National Academy of Sciences, 1989
- Double Ds elements are involved in specific chromosome breakageMolecular Genetics and Genomics, 1989
- The frequency of transposition of the maize element Activator is not affected by an adjacent deletionMolecular Genetics and Genomics, 1988
- Barbara McClintock's controlling elements: Now at the DNA levelCell, 1984
- Isolation of the transposable maize controlling elements Ac and DsCell, 1983
- The controlling element Ds at the Shrunken locus in Zea mays: Structure of the unstable sh-m5933 allele and several revertantsCell, 1983
- A technique for radiolabeling DNA restriction endonuclease fragments to high specific activityAnalytical Biochemistry, 1983