Keller’s cube-tiling conjecture is false in high dimensions
- 1 October 1992
- journal article
- Published by American Mathematical Society (AMS) in Bulletin of the American Mathematical Society
- Vol. 27 (2), 279-283
- https://doi.org/10.1090/s0273-0979-1992-00318-x
Abstract
O. H. Keller conjectured in 1930 that in any tiling of R n {\mathbb {R}^n} by unit n-cubes there exist two of them having a complete facet in common. O. Perron proved this conjecture for n ≤ 6 n \leq 6 . We show that for all n ≥ 10 n \geq 10 there exists a tiling of R n {\mathbb {R}^n} by unit n-cubes such that no two n-cubes have a complete facet in common.Keywords
All Related Versions
This publication has 6 references indexed in Scilit:
- A combinatorial approach for Keller's conjecturePeriodica Mathematica Hungarica, 1990
- A reduction of Keller's conjecturePeriodica Mathematica Hungarica, 1986
- Algebraic TilingThe American Mathematical Monthly, 1974
- Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem WürfelgitterMathematische Zeitschrift, 1942
- Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel. IIMathematische Zeitschrift, 1940
- Über die lückenlose Erfüllung des Raumes mit Würfeln.Journal für die reine und angewandte Mathematik (Crelles Journal), 1930