Metabolism of apoprotein B of plasma very low density lipoproteins in the rat.

Abstract
As an extension of metabolic studies of the cholesteryl ester component of rat very low density lipoproteins, we have studied the metabolism of the B apoprotein component labeled by intravenous injection of [3H]lysine. The B apoprotein separated from other apoproteins by delipidation and selective precipitation with tetramethylurea could not be distinguished from B apoprotein prepared by the conventional gel filtration technique. After injection of [3H]lysine, specific activity of B apoprotein was maximal in very low density and low density lipoproteins 1 and 11/2-h later, respectively, in a manner consistent with a precursor-product relationship. When protein-labeled very low density lipoproteins were injected into rats, the relationships of specific activity again indicated that B apoprotein of very low density lipoproteins may be the sole precursor of that of low density lipoproteins. However, less than 10% of the B apoprotein that disappeared from very low density lipoproteins appeared in density lipoproteins. To evaluate the sites of removal of B aproprotein of very low density lipoproteins from plasma, protein-labeled very low density lipoproteins were incubated with unlabeled high density lipoproteins to reduce radioactivity in non-B apoproteins selectively by molecular exchange. Most of the B apoprotein was rapidly removed by the liver. The extensive hepatic uptake of both the cholesteryl ester and B apoprotein components of rat very low density lipoproteins may explain the characteristically low concentrations of plasma low density lipoproteins in the rat.