Representation of Eye Position in the Human Parietal Cortex

Abstract
Neurons that signal eye position are thought to make a vital contribution to distinguishing real world motion from retinal motion caused by eye movements, but relatively little is known about such neurons in the human brain. Here we present data from functional MRI experiments that are consistent with the existence of neurons sensitive to eye position in darkness in the human posterior parietal cortex. We used the enhanced sensitivity of multivoxel pattern analysis (MVPA) techniques, combined with a searchlight paradigm, to isolate brain regions sensitive to direction of gaze. During data acquisition, participants were cued to direct their gaze to the left or right for sustained periods as part of a block-design paradigm. Following the exclusion of saccade-related activity from the data, the multivariate analysis showed sensitivity to tonic eye position in two localized posterior parietal regions, namely the dorsal precuneus and, more weakly, the posterior aspect of the intraparietal sulcus. Sensitivity to eye position was also seen in anterior portions of the occipital cortex. The observed sensitivity of visual cortical neurons to eye position, even in the total absence of visual stimulation, is possibly a result of feedback from posterior parietal regions that receive eye position signals and explicitly encode direction of gaze.