Temperature-Programmed Precise Control over the Sizes of Carbon Nanospheres Based on Benzoxazine Chemistry

Abstract
On the basis of benzoxazine chemistry, we have established a new way to synthesize highly uniform carbon nanospheres with precisely tailored sizes and high monodispersity. Using monomers including resorcinol, formaldehyde, and 1,6-diaminohexane, and in the presence of Pluronic F127 surfactant, polymer nanospheres are first synthesized under precisely programmed reaction temperatures. Subsequently, they are pseudomorphically and uniformly converted to carbon nanospheres in high yield, due to the excellent thermal stability of such polybenzoxazine-based polymers. The correlation between the initial reaction temperature (IRT) and the nanosphere size fits well with the quadratic function model, which can in turn predict the nanosphere size at a set IRT. The nanosphere sizes can easily go down to 200 nm while retaining excellent monodispersity, i.e., polydispersity <5%. The particle size uniformity is evidenced by the formation of large areas of periodic assembly structure. NMR, FT-IR, and elemental analyses prove the formation of a polybenzoxazine framework. As a demonstration of their versatility, nanocatalysts composed of highly dispersed Pd nanoparticles in the carbon nanospheres are fabricated, which show high conversion and selectivity, great reusability, and regeneration ability, as evidenced in a selective oxidation of benzyl alcohol to benzaldehyde under moderate conditions.

This publication has 56 references indexed in Scilit: