MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway

Abstract
MT1‐matrix metalloproteinase (MT1‐MMP) is one of the most critical factors in the invasion machinery of tumor cells. Subcellular localization to invasive structures is key for MT1‐MMP proinvasive activity. However, the mechanism driving this polarized distribution remains obscure. We now report that polarized exocytosis of MT1‐MMP occurs during MDA‐MB‐231 adenocarcinoma cell migration into collagen type I three‐dimensional matrices. Polarized trafficking of MT1‐MMP is triggered by β1 integrin‐mediated adhesion to collagen, and is required for protease localization at invasive structures. Localization of MT1‐MMP within VSV‐G/Rab8‐positive vesicles, but not in Rab11/Tf/TfRc‐positive compartment in invasive cells, suggests the involvement of the exocytic traffic pathway. Furthermore, constitutively active Rab8 mutants induce MT1‐MMP exocytic traffic, collagen degradation and invasion, whereas Rab8‐ but not Rab11‐knockdown inhibited these processes. Altogether, these data reveal a novel pathway of MT1‐MMP redistribution to invasive structures, exocytic vesicle trafficking, which is crucial for its role in tumor cell invasiveness. Mechanistically, MT1‐MMP delivery to invasive structures, and therefore its proinvasive activity, is regulated by Rab8 GTPase.