Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters

Abstract
We describe a novel protocol for a quantum repeater that enables long-distance quantum communication through realistic, lossy photonic channels. Contrary to previous proposals, our protocol incorporates active purification of arbitrary errors at each step of the protocol using only two qubits at each repeater station. Because of these minimal physical requirements, the present protocol can be realized in simple physical systems such as solid-state single photon emitters. As an example, we show how nitrogen-vacancy color centers in diamond can be used to implement the protocol, using the nuclear and electronic spin to form the two qubits.