Specific Binding of the Syringolide Elicitors to a Soluble Protein Fraction from Soybean Leaves.

Abstract
Syringolides are glycolipid elicitors produced by Gram-negative bacteria expressing Pseudomonas syringae avirulence gene D. The syringolides mediate gene-for-gene complementarity, inducing the hypersensitive response only in soybean plants carrying the Rpg4 disease resistance gene. A site(s) for 125I-syringolide 1 was detected in the soluble protein fraction from soybean leaves, but no evidence for ligand-specific binding to the microsomal fraction was obtained. The Kd value for syringolide 1 binding with the soluble fraction was 8.7 nM, and binding was greatly reduced by prior protease treatment or heating. A native gel assay was also used to demonstrate ligand-specific binding of labeled syringolide 1 with a soluble protein(s). Competition studies with 125I-syringolide 1 and several structural derivatives demonstrated a direct correlation between binding affinity to the soluble fraction and elicitor activity. However, differential competition binding studies disclosed no differences in syringolide binding to soluble fractions from Rpg4/Rpg4 or rpg4/rpg4 soybean leaves. Thus, the observed binding site fulfills several criteria expected of an intracellular receptor for the syringolides, but it is most likely not encoded by the Rpg4 gene. Instead, the Rpg4 gene product may function subsequent to elicitor binding, possibly in intracellular signal transduction.