Effects of oxygen exposure on respiratory activities of Desulfovibrio desulfuricans strain DvO1 isolated from activated sludge

Abstract
The present study addresses the effects of oxygen exposure on the aerobic and anaerobic respiratory activity of Desulfovibrio desulfuricans strain DvO1. This strain was isolated from the highest sulfate-reduction positive most-probable-number dilution (106) of an activated sludge sample, which had been subjected to 120 h of continuous aeration. Washed cell suspensions of strain DvO1 were aerated at 50% atmospheric oxygen saturation in sulfide-free media for a period of 33 h in the presence or absence of an external electron donor (10 mM lactate). During the aeration periods, samples were removed at intervals for determination of anaerobic INT (2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride]-reducing activity, anaerobic sulfate-reducing activity, and oxygen-reducing activity. The cell suspension aerated in the absence of lactate showed negligible endogenous oxygen reduction rates and therefore did not consume oxygen during the aeration period. In contrast, the cell suspension aerated in the presence of lactate sustained significant rates of oxygen reduction during the entire 33 h aeration period. Despite this, no explicit differences in the potential INT-, oxygen-, or sulfate-reducing activities were evident between the two cell suspensions during the aeration periods. Strain DvO1 remained viable throughout the 33 h aeration periods irrespective of the presence or absence of lactate, however, the oxygen exposure resulted in a dose-dependent reversible metabolic inactivation. Notably, lactate-dependent anaerobic sulfate-reducing activity recovered quickly upon anaerobiosis, and was more oxygen tolerant than lactate-dependent oxygen-reducing activity.