Two different proteins that compete for binding to thrombin have opposite kinetic and thermodynamic profiles
- 1 January 2004
- journal article
- research article
- Published by Wiley in Protein Science
- Vol. 13 (1), 166-176
- https://doi.org/10.1110/ps.03120604
Abstract
Thrombin binds thrombomodulin (TM) at anion binding exosite 1, an allosteric site far from the thrombin active site. A monoclonal antibody (mAb) has been isolated that competes with TM for binding to thrombin. Complete binding kinetic and thermodynamic profiles for these two protein-protein interactions have been generated. Binding kinetics were measured by Biacore. Although both interactions have similar K(D)s, TM binding is rapid and reversible while binding of the mAb is slow and nearly irreversible. The enthalpic contribution to the DeltaG(bind) was measured by isothermal titration calorimetry and van't Hoff analysis. The contribution to the DeltaG(bind) from electrostatic steering was assessed from the dependence of the k(a) on ionic strength. Release of solvent H(2)O molecules from the interface was assessed by monitoring the decrease in amide solvent accessibility at the interface upon protein-protein binding. The mAb binding is enthalpy driven and has a slow k(d). TM binding appears to be entropy driven and has a fast k(a). The favorable entropy of the thrombin-TM interaction seems to be derived from electrostatic steering and a contribution from solvent release. The two interactions have remarkably different thermodynamic driving forces for competing reactions. The possibility that optimization of binding kinetics for a particular function may be reflected in different thermodynamic driving forces is discussed.Keywords
This publication has 33 references indexed in Scilit:
- Epitope mapping of a monoclonal antibody against human thrombin by H/D‐exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved proteinProtein Science, 2002
- Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface‐ and solution‐based biophysical methodsProtein Science, 2002
- Solvent accessibility of the thrombin-thrombomodulin interfaceJournal of Molecular Biology, 2001
- Electrostatic dependence of the thrombin-thrombomodulin interactionJournal of Molecular Biology, 2000
- Isothermal Titration Calorimetry of Protein–Protein InteractionsMethods, 1999
- Folding funnels, binding funnels, and protein functionProtein Science, 1999
- Dissecting the energetics of a protein-protein interaction: the binding of ovomucoid third domain to elastase 1 1Edited by P. E. WrightJournal of Molecular Biology, 1997
- Entropy in protein folding and in protein—protein interactionsCurrent Opinion in Structural Biology, 1997
- Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactionsChemistry & Biology, 1996
- Large-scale expression, purification and characterization of small fragments of thrombomodulin: the roles of the sixth domain and of methionine 388Protein Engineering, Design and Selection, 1995