Differential Gas Exchange Responses of Two Biotypes of Redroot Pigweed to Atrazine

Abstract
Differences were shown to exist in photosynthetic rate, transpiration rate, and carbon dioxide leaf diffusive resistance between atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] susceptible (S) and resistant (R) plants of redroot pigweed (Amaranthus retroflexusL.). Chlorbromuron [3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea] and diruon [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were the only herbicides tested that controlled both biotypes, but all of the herbicides except norea [3-(hexahydro-4,7-methanoindan-5-yl)-1,1-dimethylurea] controlled the S biotype. Although photosynthetic activity and transpiration were reduced in both biotypes by atrazine at 50 and 70 ppm, the decline was much greater in the S biotype than in the R biotype and persisted a longer time in the S biotype. Leaf CO2diffusive resistances of the biotypes were increased by atrazine applications. Mesophyll resistance was increased to a greater extent than stomatal resistance suggesting that reduction of photosynthesis is due to a greater effect of atrazine on the mesophyll tissue than on the guard cells.